نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده اقتصاد و مدیریت دانشگاه صنعتی شریف

2 پژوهشگر گروه مدل‌سازی پژوهشکده پولی و بانکی

3 پژوهشگر گروه مدل سازی پژوهشکده پولی و بانکی

چکیده

شناخت پویایی‌های رفتار تورم می‌تواند به پیش‌بینی‌ دقیق‌تر رفتار آتی این متغیر کمک کند. یکی از وجوه مهم پویایی‌های رفتار تورم در اقتصاد ایران که کمتر مورد توجه قرار گرفته است، مسئله وجود یا عدم وجود شکست‌های ساختاری در سری زمانی تورم و یافتن مدل مناسب برای فرموله کردن شکست در سری زمانی این متغیر است. مقاله حاضر چنین هدفی را دنبال می‌کند.
در این مقاله با استفاده از داده‌های فصلی مربوط به تورم شاخص قیمت مصرف‌کننده از سال 1369 تا 1390، نشان داده می‌شود که تورم ایران دچار شکست‌های ساختاری شده است و در نتیجه، مدل‌های خطی با پارامترهای ثابت نمی‌توانند رفتار تورم را به خوبی توضیح دهند. سپس نشان داده می‌شود که مدل‌های خطی با پارامترهای زمان‌متغیر می‌توانند اثرات شکست‌های ساختاری را لحاظ کنند و توضیح‌دهنده خوبی برای رفتار تورم ایران هستند؛ در حالی‌که مدل‌های غیرخطی از این جهت چندان موفق نیستند. همچنین بررسی عملکرد پیش‌بینی برون‌نمونه‌ای نشان می‌دهد که پیش‌بینی‌های مدل خطی با پارامترهای زمان‌متغیر در تمام افق‌های پیش‌بینی نسبت به مدل پایه خودرگرسیون اندکی دقیق‌تر است هر چند این عملکرد بهتر به لحاظ آماری معنادار نیست. این در حالی است که عملکرد پیش‌بینی مدل غیرخطی TAR نسبت به مدل پایه خودرگرسیون ضعیف‌تر است. بنابراین هر چند مدل‌سازی زمان متغیر نرخ تورم ایران می‌تواند به توضیح رفتار این متغیر کمک کند، اما این نوع مدل‌سازی، بهبود قابل‌توجهی در پیش‌بینی تورم ایجاد نخواهد کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Structural Breaks and Modeling Behavior of Inflation-Comparison between Nonlinear and Time Varying Models

نویسندگان [English]

  • mahdi barakchiyan 1
  • Saeed Bayat 2
  • human karami 3

1 Assistant Professor, Faculty of Economics and Management, Sharif University of Technology

2 Researcher, Modeling Group, Monetary and Banking Research Institute

3 Researcher, Modeling Group, Monetary and Banking Research Institute

چکیده [English]

In this paper, Using CPI data from 1990 to 2011, it is showed that Iranian inflation series has been encountered with structural breaks. Then, it is showed that time-varying parameter models can explain the behavior of Iranian inflation, but nonlinear model cannot. Also, investigating the performance of out-of-sample forecasting shows that the performance of time-varying parameter model is slightly better than benchmark AR model in all forecast horizons, although this difference is not significant, but the nonlinear model in all forecast horizons does not have better performance than our benchmark model. So, although modeling inflation by time-varying models can explain the behavior of inflation, but it cannot help forecast inflation.

کلیدواژه‌ها [English]

  • Inflation
  • Structural Break

الف- فارسی

 
1-برکچیان، سید. مهدی؛ کرمی، هومن؛ بیات، سعید؛ «پیش‌بینی تورم ایران به روش مدل خودرگرسیون برداری تفاضلی»، مقاله در حال انجام، 1391.
2-بهبودی، داود؛ شیبانی، امینه؛ کماسی، مهدی؛ مدل‌سازی و پیش‌بینی نرخ تورم در اقتصاد ایران (بررسی مقایسه‌ای قدرت پیش‌بینی شبکه‌های عصبی - مصنوعی المان و پس انتشار خطا)، چهارمین کنفرانس ملی تحلیل پوششی داده‌ها، 1391.
3-مشیری، سعید؛ «پیش‌بینی تورم ایران با استفاده از مدل‌های ساختاری، سری‌های زمانی و شبکه‌های عصبی»، مجله تحقیقات اقتصادی، 1380، شماره 58.

ب- لاتین

4. Amisano, G; Serati, M; 2007, "BVAR Models and Forecasting: A Quarterly Model for the EMU-11", Statistica
5.Bos, C. S; Franses. P. H and Ooms. M; 1999, "Long Memory and Level Shifts: Reanalyzing Inflation Rates", Empirical Economics 24 .
6.Chow, Gregory C; 1960, "Tests of equality between sets of coefficients in two linear regressions", Econometrica: Journal of the Econometric Society 28 .
7.Clements, M. P; Hendry. D. F; 1999, Forecasting Non-stationary Economic Time Series, Cambridge: MIT Press.
8.Coakley, J., Fuertes. A. M; 1998, "TAR Models of European Real Exchange Rates", Manuscript.
9.Diebold, F. X; Kilian. L; 2000, "Unit Root Tests are Useful for Selecting Forecasting Models", Journal of Business and Economic Statistics 18.
10.Diebold, F; Mariano. R; 1995, "Comparing Predictive Accuracy", Journal of Business and Economic Statistics 13
11.Evans, G. W., Honkapohja. S; and Marimon. R; 1996, "Convergence in money Inflation Models with Heterogeneous Learning Rules", Center for Economic Policy Research, 1310.
12.Granger, C. W. J; Terasvirta. T; 1993, Modeling Nonlinear Economic Relationships, Oxford: Oxford University Press.
13.Hansen, B; 1996, "Inference When a Nuisance Parameter is not Identified under the Null Hypotheis", Econometrica 64.
14.Heidari, H; Parvin. S; 2008, "Modeling and forecasting Iranian Inflation with Time Varying BVAR Models", Iranian Journal of Economic Research 36.
15.Hyung, N; Franses. P. H; 2006, "Structural Break and Long Memory in US Inflation Rates: Do They Matter for Forecasting?", Research in international Business and finance 20.
16.Kapetanios, G; Tzavalis, E; 2004, "Modeling Structural Breaks", Unpublished.
17.Kapetanios, G; Labhard. V; Price, S; 2007, "Forecast Combination and the Bank of England’s Suite of Statistical Forecasting Models", Bank of England Working Paper 323.
18.Leybourne, S; Newbold. P; Vougas. D; 1998, "Unit Roots and Smooth Transitions", Journal of Time Series Analysis 19.
19.Marcelino, M; 2002, "Instability and Nonlinearity in the EMU", Bocconi: manuscript, IEP-U.
20.Nyblom, J; 1989, "Testing for Constancy of Parameters over Time", Journal of the American Statistical Association 84.
21.Obstfeld, M; and Taylor. A; 1997, "Nonlinear Aspects of Goods-Market Arbitrage and Adjustment: Hecksher's Commodity Points Revisited", NBER Working paper 6053.
22.O'Connell, P; Wei. S-J; 2002, "The Bigger Tyey Are, The Harder They Fall: How Price Differences Across U.S. Cities Are Arbitraged", Journal of International Economics 56.
23.Pagan, A; Report on Modeling and Forecsating at the Bank of England. Bank of England Quarterly Bulletin, 2003.
24.Sargent, T. J; Wallace. N; 1973, "Ratinoal Expectation and the Dynamics of Hyperinflation", International Economic Review 14.
25.Terasvirta, T; 1994, "Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models", Journal of the American Statistical Association 89.
26.__________ ; 2006, "Univariate Nonlinear Time series Models", In Palgrave Handbook of Econometrics: Econometrics Theory, by T.C. Mills, K. Patterson and Foreword by Sir Clive Granger. NY: Palgran Macmillan.
27.Tong, H; 1990, Non-linear Time Series: A Dynamical System Approach, Oxford, U.K.: Oxford university Press.
28.______ ; 1978, "On a Threshold Model", In Pattern Recognition and Signal Processing, by C. H. Chen. Amsterdam: Sijhoff and Noordhoff.
29.______ ; 1983, Threshold Models in Non-linear Time Series Analysis, Verlag: Springer.
30.Tong, H; Lim. K. S; 1980, "Threshold Autoregression, Limit Cycles and Cyclical Data", Journal of the Royal Statistical Society 42.
31.Webb, H; 1995, "Forecasts of Inflation from VAR Models", Journal of Forecasting, 14.
 
 
CAPTCHA Image